Digest 2020.07.14.01.pdf

Abstract: We evaluate these topics using the Meth8/VŁ4 modal logic model checker:

Refutation of axiom of choice in 1 operator or quantifier, 2 variables, and 4 connectives

We assume the method and apparatus of Meth8/VŁ4 with Tautology as the designated proof value, **F** as contradiction, N as truthity (non-contingency), and C as falsity (contingency). The 16-valued truth table is row-major and horizontal, or repeating fragments of 128-tables, sometimes with table counts, for more variables. (See ersatz-systems.com.)

LET ~ Not, \neg ; + Or, \lor , \cup , \sqcup ; - Not Or; & And, \land , \cap , \neg , \circ , \otimes ; \land Not And; > Imply, greater than, \rightarrow , \Rightarrow , \mapsto , \succ , \neg , \Rightarrow ; < Not Imply, less than, \in , \prec , \subset , \nvDash , \nvDash , \notin , \notin , \leftarrow , \lesssim ; = Equivalent, \equiv , :=, \Leftrightarrow , \leftrightarrow , \triangleq , \approx , \simeq ; @ Not Equivalent, \neq , \oplus ; % possibility, for one or some, \exists , \exists !, \diamond , M; # necessity, for every or all, \forall , \Box , L; (*z*=*z*) \top as tautology, \top , ordinal 3; (*z*@*z*) **F** as contradiction, Ø, Null, \bot , zero; (%*z*>#*z*) \underline{N} as non-contingency, \triangle , ordinal 1; (%*z*<#*z*) \underline{C} as contingency, ∇ , ordinal 2; ~(*y* < *x*) (*x* ≤ *y*), (*x* ⊆ *y*), (*x* ⊑ *y*); (A=B) (A~B). Note for clarity, we usually distribute quantifiers onto each designated variable.

We cast the axiom of choice in these words:

If possibly filled bins imply selection or no selection, and If not possibly filled bins imply no selection.		(1.1)
LET p, q: filled bins, selectio	n.	
$(p>(q+\sim q))\&(\sim p>\sim q);$	TTCT TTCT TTCT TTCT	(1.2)
Remark 1.2: Eq. 1.1 can be weakened with modal necessity or universal quantification. (2.1)		

(#p>(q+~q)&(~#p>~q); TTFN TTFN TTFN TTFN (2.2)

Eq. 1.2 or 2.2 as rendered is *not* tautologous, hence refuting the axiom of choice in one modal operator or one quantifier, two variables, and four connectives.