Digest 2022.07.16.01.pdf

Refutation of Peirce's abduction and induction, and confirmation of deduction

We assume the method and apparatus of Meth8/VŁ4 with Tautology as the designated proof value, **F** as contradiction, N as truthity (non-contingency), and C as falsity (contingency). The 16-valued truth table is row-major and horizontal, or repeating fragments of 128-tables, sometimes with table counts, for more variables. (See ersatz-systems.com.)

LET ~ Not, \neg ; + Or, \lor , \cup , \sqcup , \mid ; - Not Or; & And, \land , \cap , \neg , \circ , \otimes ; \backslash Not And, \uparrow ; > Imply, greater than, \rightarrow , \Rightarrow , \vDash , \succ , \supset , *; < Not Imply, less than, \in , \prec , \subset , \nvDash , \nvDash , \leftarrow , \lesssim ; = Equivalent, \equiv , :=, \Leftrightarrow , \leftrightarrow , \triangleq , \approx , \simeq ; @ Not Equivalent, \neq , \oplus ; % possibility, for one or some, \exists , \exists !, \diamond , M; # necessity, for every or all, \forall , \Box , L; (z=z) T as tautology, \top , ordinal 3; (z@z) F as contradiction, Ø, Null, \bot , zero; (%z>#z) <u>N</u> as non-contingency, \triangle , ordinal 1; (%z<#z) <u>C</u> as contingency, ∇ , ordinal 2; ~(y < x) (x ≤ y), (x ⊆ y), (x ⊑ y); (A=B) (A~B). Notes: for clarity, we usually distribute quantifiers onto each designated variable; and for ordinal arithmetic, the result is implied.

11.5. Refutation of Peirce's abduction and induction, and confirmation of deduction

[This was taken from a 2019 dissertation draft for reproduction here after renewed interest in rules of inference.]

From: iep.utm.edu/peir-log/

C.S. Peirce originally defined the three forms of inference in logic as:

Abduction:	(Q is S) and (Q is P) imply (S is P)	(11.5.1.1.1)
------------	--------------------------------------	--------------

LET p, q, s: P, Q, S.

Induction: (S is Q) and (P is Q) imply (S is P) (11.5.2.1.1)

$$((s=q)\&(p=q))>(s=p);$$
 TTTT TTTT TTTT TTTT (11.5.2.1.2)

Peirce described Eqs. 11.5.1 - 11.5.3 as inversions of the same.

Remark 11.5.1.1.1: If the word "is" is taken to mean the word "implies" then the connective = is replaced with the connective > below.

Abduction:	(Q implies S) and	(11.5.1.2.1)	
((q>s))&(q>p))>(s>p);	TTTT TTTT F TTT F TTT	(11.5.1.2.2)

Induction:	(S implies Q) and (I	(11.5.2.2.1)	
((s>q)&(p>q))>(s>p);	TTTT TTTT TT F T TT F T	(11.5.2.2.2)
Deduction:	(S implies Q) and (Q implies P) imply (S implies P)	(11.5.3.2.1)
((s>q)&(q>p))>(s>p);	TTTT TTTT TTTT TTTT	(11.5.3.2.2)

Remark 11.5.1.2.2-11.5.2.2.2: Eqs. 11.5.1.2.2 - 11.5.2.2.2 as rendered for abduction and induction are *not* tautologous, but Eq. 11.5.3.2.2 is tautologous. This means that abduction and induction are not inversions of deduction, leaving deduction as the only form of tautologous inference in logic.