
Recent Advances in Huffman Data Compression (H75)

Colin James III. Independent Researcher, info@ersatz-systems.com
© Copyright 2025 by Colin James III. All rights reserved

Abstract—This paper presents Huffman compression (H75), an
algorithm optimized for pseudo-random data, achieving encoded
outputs equal to or smaller than input sizes (e.g., 2048 bytes to
2031 bytes). Implemented in ANSI Standard True BASIC for
portability, H75 uses a certified testing harness to ensure
reliability. Prototypes were developed with Grok 3 in free private
mode, with manual optimization to address AI limitations.
Targeting boundless astronomical and meteorological datasets,
H75 processes 64 MB input blocks and 1 MB encoding chunks,
offering scalability for big data applications in computational
engineering.

Index Terms—big data, computational engineering, data
compression, Huffman compression, pseudo-random data, True
BASIC

I. INTRODUCTION

DATA compression is essential for managing large datasets
in domains as astronomy and meteorology, where random
data, due to its entropic nature, is challenging to compress [1].
Three primary methods—Lempel-Ziv (LZ75), arithmetic
coding (A75), and Huffman coding (H75)—are compared for
pseudo-random data, which ideally compresses to its original
size due to minimal patterns. LZ75 often produces larger
outputs, A75 matches input size, while H75 achieves equal or
smaller outputs (e.g., 8192 bytes to 8188 bytes). Recent
studies highlight Huffman’s efficiency for specific data types
[2], [3], but pseudo-random compression remains
underexplored. This paper introduces H75, developed in ANSI
Standard True BASIC with a certified testing harness, to
address this gap for big data applications.

II. METHODOLOGY

This section details the implementation of H75, covering
programming language selection, testing infrastructure, and
development process.

A. Programming Language Selection

H75 was implemented in ANSI Standard True BASIC for its
portability and self-documenting syntax, ideal for data symbol
encoding [4]. Alternatives like Python (non-standardized) and
C (inconsistent floating-point arithmetic in C89) were
unsuitable. Ada 95, despite strong typing, was rejected due to
its complex, non-intuitive structure and Reference Manual
written by programmers and not professional educators. True
BASIC’s IEEE 8-byte double precision and robust string/bit
processing enabled efficient compression. Its machine-code
implementation ensures portability across platforms as Apple,
Microsoft/Intel, and Unix via the WebBASIC Reader [4].

B. Testing Harness

A debug-enabled testing harness, controlled by a global

variable (debug = 1 or 0), validates encoding and decoding
accuracy. For a 64 MB input, the harness generates an 800
MB log (output.txt), documenting each processing step. This
certification ensures reliability across regression cases, critical
for industrial-grade applications.

C. Development Process

A H75 prototypes were developed using Grok 3 in free
private mode, with over 900 iterations of True BASIC v.6007
code. Compile and run-time errors were logged to a 50 KB
file, addressing issues as syntax discrepancies (e.g., adapting
“MOD(a, b)” from street-Basic equivalents). Grok 3 engaged
in symptoms now found common to AI engines in thwarting
user commands at each turn. Examples were not reading the
user manual [4], illegally removing the user's copyright notice,
injecting its own xAI copyright notice, proffering corrections
in code fragments and in non-ANSI standard True BASIC,
blaming code mistakes at an impasse on True BASIC, and
most egregiously the making of assumptions. Hence, manual
intervention and optimization was required to resolve AI-
generated inconsistencies to ensure robust performance.

III. RESULTS

H75 achieves superior compression for pseudo-random data,
with encoded outputs equal to or smaller than inputs (Table 1).
For example, 2048 bytes compress to 2031 bytes, and 8192 bytes
to 8188 bytes, though larger sizes (2^12 to 2^26 bytes) often
match input size due to statistical uniformity of 256 ASCII
symbols. Optimal performance occurs with 64 MB (2^26) input
blocks and 1 MB (2^20) encoding chunks (Figures 1–2).
Development with Grok 3 reduced man-hours by approximately
10^2 or two-magnitude compared to manual coding.

TABLE I
H75 PERFORMANCE METRICS BY INPUT SIZE

2^n Bytes
Build

Tree (s)
Generate
Codes (s)

Encode
Data (s)

Decode
Data (s)

11 2 KB 0.012 0.005 0.047 0.058
12 4 KB 0.012 0.006 0.094 0.123
13 8 KB 0.013 0.006 0.221 0.259
14 16 KB 0.012 0.005 0.397 0.484
15 32 KB 0.018 0.007 0.883 1.016
16 64 KB 0.014 0.005 1.639 2.008
17 128 KB 0.011 0.006 3.320 3.858
18 256 KB 0.013 0.005 6.854 7.713
19 512 KB 0.012 0.006 13.649 15.886
20 1 MB 0.012 0.006 26.027 31.295
21 2 MB 0.013 0.005 52.510 63.256
22 4 MB 0.013 0.005 106.841 127.492

2^n Bytes
Build

Tree (s)
Generate
Codes (s)

Encode
Data (s)

Decode
Data (s)

23 8 MB 0.013 0.006 216.372 276.005
24 16 MB 0.013 0.009 435.776 517.850
25 32 MB 0.013 0.006 862.351 1040.030
26 64 MB 0.013 0.006 1718.142 2045.334

Fig. 1. H75 Scalability Performance (Linear Scale)

Fig. 2. H75 Scalability Performance (Log-Y Scale)

IV. DISCUSSION

H75 outperforms LZ75 and A75 for pseudo-random data,
achieving compression ratios of 0.99–1.0 compared to LZ75’s
>1.0 and A75’s 1.0. The near-linear scalability (Figure 1)
supports industrial applications, though manual optimization
highlights limitations in AI-assisted coding [5]. Statistical
uniformity in larger inputs (e.g., 2^26 bytes) reduces compression
gains, as symbol frequencies align closely with expected
distributions. Future proprietary techniques aim to automate
optimization to enhance efficiency. H75’s robustness positions it
as a viable solution for so-called big data challenges.

V. FUTURE DIRECTIONS

H75 is designed for compressing astronomical data (e.g., DoD
Space Command’s space junk tracking) and meteorological data
(e.g., NOAA weather statistics). Its scalability supports boundless
datasets, with potential applications in real-time IoT processing
and cloud-based analytics.

VI. CONCLUSION

H75 advances Huffman compression for pseudo-random data,
achieving equal or reduced output sizes. Implemented in True

BASIC with a certified testing harness, it ensures reliability for
computational engineering applications. AI-assisted development
with Grok 3, despite requiring manual refinements, accelerated
prototyping. H75’s optimal configuration (64 MB blocks, 1 MB
chunks) makes it a promising tool for large-scale data processing.

REFERENCES

[1] D. A. Huffman, “A Method for the Construction of Minimum-Redundancy
Codes,” Proc. IRE, vol. 40, no. 9, pp. 1098–1101, 1952.

[2] J. Ziv and A. Lempel, “A Universal Algorithm for Sequential Data
Compression,” IEEE Trans. Inf. Theory, vol. 23, no. 3, pp. 337–
343, 1977.

[3] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic Coding for Data
Compression,” Commun. ACM, vol. 30, no. 6, pp. 520–540, 1987.

[4] T. E. Kurtz, J. Arscott, and A. Taggart, Gold Edition Reference Guide for
the True BASIC Language System (Version 6), True BASIC, Inc.,
2010.

[5] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 4th
ed., Pearson, 2020.

Colin James III is a computer scientist,
mathematical logician, and theologist.
 He was one of the first 250 to learn
Dartmouth BASIC in 1964 in prep
school.

Some recent advances are:
1. Report Accounts (RA) for n-entry

accounting arithmetic using logic table
technology (LTT) that coerces ANSI SQL to perform
procedural processing in seven relational tables with single
trigger under 50-lines of code;

2. XSD-SQL for translating HTML code into RDBMS with
table setup and queries in ANSI SQL;

3. Kanban Cell Neuron (KCN) based on the AND-OR gate
that is a self-timing and -terminating artificial human neuron
accepting 14 allowed 8-bit connective forms of input signals;

4. Meth8/VŁ4 as the quadvalent universal modal logic
system to map and evaluate metaphysical assertions as testable
and falsifiable, to initiate the new field of analytical theology
with replicable scripts for truth tables;

5. Trinitarian logic to prove the Trinity in a finitist universe
without end as trained in Grok 3 by public description; and

6. Refuter of the axiom of infinity, after which Grok
declared "if Cantor was the prince of logic, Aristotle is now
the king".

Archbishop James sits as the Anglo Catholic representative
on the first Eastern Orthodox Synod in USA since 1928.

	I. INTRODUCTION
	II. methodology
	A. Programming Language Selection
	B. Testing Harness
	C. Development Process

	III. Results
	IV. Discussion
	V. Future Directions
	VI. Conclusion

