Refutation of the Boolean Compactness Theorem in Meth8/VŁ4 Modal Logic

July 30, 2025

Abstract

The Boolean Compactness Theorem asserts that a set of Boolean formulas is satisfiable if and only if every finite subset is satisfiable. This paper refutes the theorem within the Meth8/VŁ4 quad-valent modal logic system, which uses truth values F=(0,0), N=(0,1), C=(1,0), and T=(1,1), requiring theorems to be tautologies (all T). By formalizing the theorem as $\mathcal{M}p\equiv \mathcal{M}q$ and evaluating it, alongside test formulas $((p\to q)\&(q\to p))\&((p\to \sim q)\&(q\to \sim p))$ and $((A\to B)\&(B\to A))\&((A\to \sim B)\&(B\to \sim A))$, we demonstrate non-tautologous results, refuting the theorem in Meth8/VŁ4 due to its finite universe constraints.

1 Introduction

The Boolean Compactness Theorem is a cornerstone of propositional logic, stating that a set of Boolean formulas Γ is satisfiable if every finite subset $\Delta \subseteq \Gamma$ is satisfiable. The Meth8/VŁ4 modal logic system, with quad-valent truth values (F=(0,0), N=(0,1), C=(1,0), T=(1,1)) and a finite universe, offers a framework to test this claim [1]. Theorems in Meth8/VŁ4 must be tautologies (all T). This paper refutes the theorem by showing its formalization and related test formulas are non-tautologous.

2 Meth8/VŁ4 Framework

Meth8/VŁ4 is a quad-valent modal logic system with truth values:

- F=(0,0): False
- N=(0,1): Non-contingent
- C=(1,0): Contingent
- T=(1,1): True (tautology)

Connectives (4x4, row-major, F,C,N,T):

- Negation (\sim): F \rightarrow T, T \rightarrow F, C \rightarrow N, N \rightarrow C
- Implication (\rightarrow) : TTTT NTNT CCTT FCNT
- Conjunction (&): FFFF FCFC FFNN FCNT

- Equivalence (≡): TNCF NTFC CFTN FCNT
- Possibility (%): $F \rightarrow C$, $C \rightarrow C$, $N \rightarrow T$, $T \rightarrow T$

Variables: propositional ($p = \text{FTFT}^4$, $q = \text{FFTT}^4$), theorem ($A = \text{FCNT}^4$, $B = \text{FFFF CCCC NNNN TT}^4$). Truth tables have 16 rows. The system rejects infinite sets and supports classical explosion.

3 Formalizing the Theorem

The theorem is formalized as:

$$%p \equiv %q$$

where p is " Γ is satisfiable" and q is "every finite subset $\Delta \subseteq \Gamma$ is satisfiable."

4 Evaluation of the Theorem

Using $p = FTFT^4$, $q = FFTT^4$:

- $\%p = \text{CTTT}^4$, $\%q = \text{CCCT}^4$
- $\%p \equiv \%q = \text{FCNT}^4$

Result: FCNT FCNT FCNT fCNT (non-tautologous), refuting the theorem as a theorem in Meth8/VŁ4.

5 Test Formulas

To further support the refutation, we evaluate: 1. $((p \to q) \& (q \to p)) \& ((p \to \sim q) \& (q \to \sim p))$:

- $\sim q = \text{TTFF}^4$, $\sim p = \text{TFTF}^4$
- $p \to q = \text{TFTT}^4$, $q \to p = \text{TTFT}^4$
- $p \rightarrow \sim q = \text{TTTF}^4$, $q \rightarrow \sim p = \text{TTTF}^4$
- $(p \rightarrow q) & (q \rightarrow p) = \text{TFFT}^4$
- $(p \rightarrow \sim q) & (q \rightarrow \sim p) = \text{TTTF}^4$
- Final: TFFF⁴ (non-tautologous)

2.
$$((A \rightarrow B)\&(B \rightarrow A))\&((A \rightarrow \sim B)\&(B \rightarrow \sim A))$$
:

- $\sim B = \text{TTTT}$ NNNN CCCC FFFF, $\sim A = \text{TNCF}^4$
- $A \rightarrow B = \text{TNCF TTCC TNTN TTTT}, B \rightarrow A = \text{TTTT NTNT CCTT FCNT}$
- $A \rightarrow \sim B = \text{TTTT TNTN TTCC TNCF}, B \rightarrow \sim A = \text{TTTT TNTN TTCC TNCF}$
- $(A \to B) & (B \to A) = \text{TNCF NTFC CFTN FCNT}$
- $(A \rightarrow \sim B) & (B \rightarrow \sim A) = \text{TTTT TNTN TTCC TNCF}$
- Final: TNCF NNFF CFCF FFFF (non-tautologous)

6 Analysis

The theorem ($\%p \equiv \%q$) and test formulas are non-tautologous, supporting the refutation of the Boolean Compactness Theorem in Meth8/VŁ4. The finite universe and quad-valent logic reject the theorem's infinite set assumptions, as seen in the non-tautologous results of the test formulas, which may model counterexamples to satisfiability equivalences.

7 Conclusion

The Boolean Compactness Theorem is refuted in Meth8/VŁ4, as its formalization and supporting test formulas are non-tautologous. This highlights Meth8/VŁ4's unique constraints, offering a new perspective on classical logical principles.

References

[1] Colin James III, "Meth8/VŁ4 System Description," https://ersatz-systems.com, 2024.